人工智能为何要像人类一样学习
为何最强人工智能比不上婴儿大脑?机器可以理解语音、识别面部和安全驾驶汽车。这让人们十分讶异于近期的技术方面的进步。但是,如果人工智能领域想要实现革命性的跨越,从而建造出类人式的机器,它首先将要掌握婴儿的学习方式。
「在相对最近的人工智能中,人们从想直接设计一个可以完成成人做的事情的系统转变成一种认识——即如果想要有一个灵活和强大的系统来完成成人做的事情,这个系统需要能够学习婴儿和孩子做事情的方式。」加州大学伯克利分校的发展心理学家 Alison Gopnik 说,「如果你将现在计算机可以完成的事情与 10 年前可以完成的事情相比较,它们已经取得了很大的进步,但是如果你将这些事情与一个 4 岁儿童可以做的事相比较,仍然有相当大的差距。」
婴儿和孩子使用一种和科学家用来构建科学理论的相同的方法来构建关于他们的周围的世界的理论。他们以一种系统的和实验性的努力来探索和测试他们周围的环境以及环境中的人,这对于学习至关重要。
Gopnik 最近和一组研究人员一起研究揭示了 15 个月大的孩子相比年龄更大的孩子是如何使用统计数据来更好地学习因果关系的。婴幼儿也许是更好的学习者,因为他们的大脑更加灵活或者「可塑性」更强 ;他们较少地被背景知识所影响,这也让他们有着更加开放的头脑。大脑并非是不变的,而是随着每一次学习的经验而改变。
通过将发展心理学家和计算学家的专业知识相结合,人们可以揭示出世界上最好的学习型大脑是如何工作的,并且将其计算能力转化到机器的身上。最近,人工智能需要大量的数据来提取模式和结论,但那些对周围世界有相对较少数据的婴儿使用的是一种被称为贝叶斯学习(Bayesian learning)的统计评估方法(参阅机器之心文章《深度 | 大脑认知机制是贝叶斯式的吗?》)。也就是说,这种理解并非是基于一个结果的已知频率(婴儿所没有的信息),而是基于当前的知识推断出的事情发生的可能性,其随着新接收到的信息而连续调整。
「令人震惊的是,婴儿可以只看到一次或听到一个新单词的时候,他们就已经对这个新词的可能意思和可能的使用方法等有了一个很好的认识了;」Gopnik 说。「所以这些贝叶斯方法很好地解释了在没有充足数据的情况下,这些孩子为什么如此擅长于学习。」
婴儿们使用概率模型通过组合概率和可能性(probabilities and possibilities)来得出结论,从而创造出各种假设。随着大脑的成熟,它变得更加专业化以便执行复杂的功能,因此也变得不那么灵活,越来越难以随着时间而改变。年长的学习者发展出了有偏见的观点,因为他们更多地了解世界并且加强某些神经连接,这阻碍了他们基于很少的信息来形成具有创新性的假设和抽象理论的能力。这种能力使得 5 岁以下的婴儿和儿童茁壮成长。
「这种权衡关系就是,你知道的越多,你就越难以考虑新的可能性,」Gopnik 说。「你知道的越多,你就越依赖于你知道的东西,而对新的东西则不能保持一个开放的态度。从进化的角度来看,婴儿的整体情况就是他们不知道那么多,所以他们可以更好地学习新的东西。」
在婴儿刚出生的几年,每一秒都有 700 个新神经连接生成,这是让一个灵活的大脑处理快速积累的来自环境和社交的信息所必需的部分。比起在成年时期重新组合大脑回路,生命早期的可塑性使得从零建立大脑的架构更加容易。贝叶斯学习已经被证明是儿童发展中的一个强大工具,计算机科学家正在使用该模型设计智能学习机。
麻省理工学院大脑和认知科学系的教授、计算认识科学家 Joshua Tenenbaum 说:「贝叶斯算法正在试图捕捉婴儿的学习模式,」他正在与 Gopnik 合作进一步研究其计算机和心理学的混合领域。「当这些孩子进入了真实的世界时,就已经有准备好的基本的构建模块来让他们理解一些最复杂的概念。然后,他们有学习机制——即以这些最初的构建模块来尝试从稀疏数据推理,并创造因果理论。」
推荐阅读
- #补贴#江阴为何迟迟没执行?|解忧帮 无锡:机动车报废有补贴
- OC为何跌出语言榜前十
- 何能|布局素质教育 教育巨头为何能迅速推进?
- 汽车|把车越卖越贵,全新领克01为何可以这样?
- 阿里程序员网上招人的情况为何如此多见
- 心流西春|为何你的后半箱油总是不耐用?油是正经油,问题可能出在这里
- 一粒尘埃的尘|为何很多新车不再设计“雾灯”,雾灯不重要吗?
- 环球车讯网|宝马MINI 为何在“迷你”的路上越跑越远?
- 汽车一起看|为何说国产高端SUV三强之首是名爵HS,领克和WEY竟无法反驳?
- 汽车知识|沃尔沃XC60为何能直击年轻人的心?看完便知