医疗科技:把握终端场景变革、数字化、科技赋能的投资机会( 四 )


通过 AI 算法及硬件的辅助,语音识别到文字转换可以在很短的时间内完成,在保证识别 率的前提下,大大减少了医生的工作负担,也保证了病人档案的完备性和更新的实时性 。
语音识别系统一般通过以下环节实现声波信号到文本的转换:预处理环节、提取声学特 征环节和确定用词环节 。首先,在预处理阶段通过传统的算法降低声波信号的噪声干扰, 并将整段声音分割成毫秒级别长度的音频帧 。其次,针对每一段音频帧提取声学特征, 用一个多维向量表示每一帧波形 。最后确定用词环节中,根据特征向量,通过循环神经 网络模型(RNN)将音频帧识别成状态1,进而将状态组合成音素2,音素组合成单词,最 终确定声音信号表达的语句文本 。

医疗科技:把握终端场景变革、数字化、科技赋能的投资机会

文章插图
 
美国语音病历系统借助电子病例建设政策东风推进 。2011 年美国政府推出激励计划和惩 罚措施大力推进全国范围的病历电子化,大力推进语音电子病历系统 。目前,其医疗语 音解决方案在美国医疗机构中的覆盖率高达 72%,其客户分布在全球 30 余个国家和地区, 已经有 50 万名临床医师和 1 万台医疗设备采用其医疗语音解决方案 。但是从近几年公司 年报来看,该公司持续亏损,主要由于 Nuance 核心语音识别技术较为落后,其他智能语 音市场被 google、苹果微软等科技巨头蚕食 。
国内语音电子病历系统处于起步阶段,市场前景广阔 。语音电子病历系统首先建立在医 院信息化系统基础上,我国医院信息化系统渗透率较低;另一方面,基于中文的语音识 别技术起步较晚,所以目前该系统多数落地于试点医院,还未推广普及 。对标美国医疗 系统的渗透率,国内语音电子病历系统市场前景广阔 。
医疗机构间相互独立性强,系统落地过程中拓展市场是关键,数据集仍有待优化 。国内 医疗机构之间业务方面联系较少,在信息化方面,国内距离医院间信息共享和传播的信 息化阶段非常遥远,所以语音病历系统在落地的过程中,需要逐个与医院建立单点联系, 这对于企业的市场拓展是一重阻碍,所以我们认为有医疗机构渠道优势的企业会较早实 现系统落地 。此外,由于现今语音识别到文字转换这一环节正确率已有一定程度保证, 如何将直白的语言转换为医疗用结构化数据将是关键 。我们认为,转换的效率和效果均 与训练数据集有关,若医疗数据的获取更加顺利,真正语音病历的全面落地速度会变得 更快 。
? 医疗咨询
导诊与预问诊是指在用户有轻微症状或有分诊需求的时候,通过与系统的交互得到一个 较为宽泛的诊断信息,辅助用户在相应的科室挂号或辅助医院分诊台工作人员为患者提 供分诊服务 。通过智能的人机对话,医疗机构可以使精确导诊服务前置于挂号和就诊前, 提高医疗服务效率,改善患者的就医体验 。智能导诊帮助解决了三类问题:1)根据症状 诊断疾病;2)根据疾病导诊科室;3)直接挂号最匹配的科室大夫 。相比人工导诊,智 能导诊不仅可以全天 24 小时在线,而且可以匹配医生,精确度更为提高,提高医患双方 的效率和体验 。
在 AI 技术的助力下,移动问诊向辅助诊疗方向不断发展 。移动问诊为就医过程中带来更 好的就医体验更多的是渠道拓展,让患者有较为便利的渠道与医生进行有效沟通 。而未 来,在 AI 技术的推进下,移动问诊从“互联网+”形态转变为“AI+”形态,不仅是在渠 道上,更是在医疗服务上为用户带来更好的就医体验 。目前,人工智能技术在辅助诊疗 上不断进行尝试与突破,2018 年 6 月 21 日,腾讯发布首个 AI 医学辅助诊疗开放平台, 除 2017 年发布的 AI 影像诊断“腾讯觅影”以外,通过模拟医生的学习经历,运用自然 语言处理技术分析学习医学文献、病历等信息,构建诊疗的知识图谱,最终通过病历检 索和知识图谱推理建立诊断模型 。目前该平台涵盖医院门诊 90%的高频诊断疾病在内可 以预测 700 多种疾病 。技术的发展拓展了移动医疗的边界 。
平安好医生是“互联网+”时代移动问诊领域跑出的领军企业,目前正尝试 AI 技术赋能 。 以平安好医生为例,平安好医生 App 是“互联网+”时代发展起来的 C 端移动问诊服务应 用,由平安健康(平安集团旗下的全资子公司)推出,2018 年 5 月已于港交所上市 。在过去几年的发展中,平安好医生服务了上亿用户,积累海量信息化的问诊、处方、用药 等医疗大数据,为其应用 AI 技术打下了坚实的基础 。目前平安好医生已经开始从部分疾 病入手,建立智能问诊系统 。


推荐阅读