企业怎样做大数据转型

这并不是一项简单的任务,迅速吸收、整合与分析数据的能力缺一不可,而数据又来自内部原有的数据以及未来源源不绝诞生的海量数据,最终你必须把数据转化成决策,并且以此为本,能在各种状况采取最适当的解决方案。法国凯捷管理顾问公司「洞见与数据」副总裁 Jeff Hunter 表示,他们调查了 1000 名企业高层,整理出七项企业转型成「数据为本」的过程中,所需遵循的七大要点。
  要点1:从原有的业务与技术中开始着手
想要转型成以大数据公司,首先一定得先确认业务目标,接着便能规划战略蓝图,运用新的数据来源,达成你所设定的目标。数据成熟度与技术两者双管齐下的起点,将决定未来整趟旅程的行进过程。
要点 2:从相互连结的物联网中建造数据景观
  「物联网」的实现近在咫尺,而且已经产生(而且会持续产生)史无前例的巨大数据。「存活超过 20 年的企业,近来不断设法制定企业数据策略,因为他们里头有数不清的数据市集(datamarts)和数据孤岛(data silos)」Hunter 说。尽管公司组织努力解决数据孤岛的问题,但是宛如瀑布般倾泻而下的数据,只会一再造出新的孤岛,除非你的环境已经准备好应付那些海量数据,毕竟现在数据量产生的速度,远超 20 年前我们所习惯的步调。
  要点 3:建立数据科学与分析的文化
  想靠「数据」发威,光有技术不够,还得建立一个理解数据、而且懂得利用数据的文化,两者缺一不可,文化甚至更加重要。「对我们来说,『懂数据』不再只是副产品,而是重要的资产,你要培养『这是一种资产』的心态,你要知道,数据有可能帮你重整业务流程或挖掘出新的收入来源。」因此,数据科学不该只是几个人的职责,必须灌输到整间企业的全体成员身上,让所有的决策都变得更明智。
  要点4:从小做起,不断迭代
  我们可以预期使用者对于资讯与数据洞见的需求会愈来愈多,这表示他们要能随时随地获取这些资讯。这不是一件容易的事情,但是企业可以先从「小事」做起,找到一个可以从数据中直接受益的业务目标,接着反覆改善(iterate),让团队不断汲取经验,最终能以数据洞悉、解决业务问题,「这个过程可以持续复制、重复消耗,」Hunter 强调。
  要点5:用数据科学丈量数据科学的成败
  要让数据当个称职的主角,你得采用数据科学的方法来判断数据科学是否成功,这不是什麽跳针的玩笑话。随着你的企业从数据洞见取得的营收愈来愈多,你得要能辨析数据政策是否产生重要的改变,要发展一套尺度用衡量成败。「我们怎麽丈量成功或失败?『洞察』就是我们最重视也最关键的 KPI。」
  要点 6:数据的安全与隐私至高无上
  只靠直觉行事很糟,但未经筛选、从良莠不齐或不可靠的数据中采集作为决策考量,更糟。倘若你无法处理数据安全以及尊重隐私,将会导致企业暴露在险境之中。「维护数据资产的安全与隐私,是最基本的要务,我们总是尽己所能管理数据。」Hunter 强调,无论数据产生的速度多快,都不能轻忽契约或有违反法律的情事。
  要点 7:赋予成员洞察「作用点」的力量
  唯有公司内部的成员面对数据洞见时能够迅速产生反应,数据才有价值。只有员工一同数据分析,企业价值才能得以挖掘。大数据魔镜魔镜能实现协同分析,是企业们不错的选择。这些洞见在「作用点(point of action)」上必须有所区隔,比方说,如果现阶段的目标是优化购物车,反应够快的人就会想到可以在交易完结之前,提供消费者某些推荐商品。Hunter 以机械操作员来比喻,就是要让他们能够预测钻头何时可能会损坏。建立数据为本的心态,而且懂得因事制宜,方能抢在事情发生之前预做准备。

■网友
不是我胡扯,除非万不得已,还是不要做大数据处理,特别是对企业内部的一些数据进行处理。除非企业有产品能拿到外部客户的数据,比如客户产生的交易,客户购买产品的动态等。或者企业有能力抓取很多外部信息,否则传统业务部门的数据分析工具早可以解决常见性问题。不否认大数据是个好东西,但扪心自问,数据真的已经大了么?说良心话国内99%的企业数据量都很小。部分表几亿的数据量都不能叫大。


推荐阅读