飞矢不动这一观点是指,飞矢不动说明什么哲学问题-
(应邀回答)
(小石头不懂物理 , 所以仅站在数学的角度回答这个问题!)
建立数学模型【飞矢不动这一观点是指,飞矢不动说明什么哲学问题-】
文章插图
如上图 , 飞矢看做一个质点 A , 设定 A 在 时刻 0 从X 轴 原点 0 离弦出发 , 沿着 X 轴 正方向 直线运动 , 最终 在时刻 1 射中位于 X 轴 单位点 1 处的靶心 , 我们忽略重力只考虑空气阻力 , 因此 A 在空间 I = [0, 1] 和 时间 T = [0, 1] 内进行了 非匀速直线运动 。
设 , 函数 x: T → I 为 A 的运动轨迹方程 , 于是 , 对于任意给定 时刻 t ∈ T , 可得到 A 所处的位置点 x(t) ∈ I 。
又令 , 函数: μ(a, b) = |a - b| 用于测量 任意两个空间(或 时间)点 a, b 之间的距离(或 时间间隔) 。
任意选取 T 中两个时刻 t, t? ( t ≤ t?) , 则定义 A 在 时间区间 [t, t?] (或 空间区间 [x(t), x(t?)] 内的 平均速度 为:
V = μ(x(t), x(t?)) / μ(t, t?)
当 t? 无限趋近于 t 时 , 平均速度 V 的极限:
v = lim_{t? → t } V
就是 A 在 t 时刻(或 x(t) 处) 的 瞬时速度 , 记为 v = x'(t) = dx/dt 。
飞矢不动悖论虽然 , 我们从以上数学模型中 , 得到了 A 在 t 时刻 上 的瞬时速度 v 肯能不为 0 , 但是由于 t 时刻 上时间间隔为:
μ(t, t) = | t - t | = 0
因此 ,
A 在 t 时刻 上 运动的距离 s = v μ(t, t) = 0 , 即 , A 没有移动 。这也符合 空间 点 x(t) 的大小为 0 的数学定义 , 即 , μ(x(t), x(t)) = 0 。
于是 , 问题就来的:
既然 , A 在 T 中每个时刻 t 的都没有移动 , 那么 A 是如何 在 整个 μ(T) = μ(0, 1) = 1 时刻内 , 产生 μ(I) = μ(0, 1) = 1 的移动呢?
换句话说就是:
既然 A 在 T 中每个时刻 t 的移动的 0 , 那么 这些 0 合起来 应该也是 0 , 但是 为什么 是 1 呢?
这就是 “飞矢不动”悖论 。
飞矢不动的秘密我们之所以认为飞矢不动有悖论 , 是因为我们的如下直觉:
0 + 0 + ... = 0 ①
这称为 可列可加性 。具体来说就是:
可列个 0 加起来仍然为 0
但是 , 我们需要注意的是 , 这种直觉 的适用范围:相加的 0 的个数 必须 可列 。
所谓可列就是: 可以 排成一条队列 , 允许这条队列是无穷无尽的 , 就像 ① 等式左边那样 。
如果 , 可以将 I 中的每个点 排成一列:
x?, x?, x? ...
则有(规定 μ([x, y]) = μ(x, y) , 为了方便令 [x] = [x, x]):
1 = μ(I) = μ([x?] + [x?] + [x?] + ...) = μ([x?]) + μ([x?]) + μ([x?]) + ... = 0 + 0 + 0 + ... = 0
矛盾 , 悖论成立 。
但是实际上是 , I 中的点 不能 排成一 列 , 因为 , A 在飞行过程中 形成的 路线 I 是连续的 , 连续是比 可列 更 紧密的 一种状态 。
连续就意味着我们不能在其中找到漏洞 , 从而无法再插入一个新的点 , 而 队列则可以在任意两个点之间 插队 。
文章插图
排成一列就意味着 可以 从头 一个一个的 数出来 , 因此 , 我们也称 可列 为 可数 , 同时 , 我们称 连续 为 不可数 , 于是我们说:
只有 可数个 0 相加 才是 0 , 不可数 个 0 相加 不一定 是 0;
我们的最终结论:
由于 A 的行动路径 I 中包含的点 不可数 , 所以 , 虽然 A 在 每个点 的移动距离 为 0 , 但是 这些 0 加起来 可以不为 0(事实上 等于 1) 。飞矢不动 是 合理的 , 悖论不成立 。
这就是 飞矢不动 的秘密 。
古代哲学家想出来的 有些 哲学悖论 , 在经过严谨的数学研究和论证后 , 都被证明是伪悖论 , 除了 这里的 飞矢不动 还有 阿基里斯追龟 。
(小石头 , 数学水平有限 , 这里献丑了 , 欢迎各位条友点评 。)
什么是运动?运动就是 , 一 , 物体在给定的时刻 , 处在一个给定的位置上;二 , 物体在不同的时刻 , 处在不同的位置上 。
推荐阅读
- 郭碧婷|向太疑开导郭碧婷:“傻才幸福,聪明太累”,郭爸爸可不吃这一套
- 黎明破晓前|《爱在黎明破晓前》:爱情的美好,在这一夜之中体会深刻
- 我们这十年|我们这十年:吃饭不动筷,阿香用行动证明,女演员对体重有多谨慎
- 林志颖|时隔3个月后,林志颖单手开车还竖大拇指,这一次开的不是电车了
- 高川|执念如影:高川不顾及冬仔奶奶的安危?这一细节是他在保护冬仔
- 小李飞刀|20年后再看《小李飞刀》:但凡男主丑一点,都压不住这一众美人
- 水库|浮漂钓法:浮漂不动它就下沉或上浮运动
- 李沁|李沁的表演是无可争议的,她已经塑造了无数的经典角色,这一次也不会有任何的例外
- |职场“有担当”的下属,大多都懂得这一条原则
- 实行不动产登记后,小产权房会不会因此转正?