没有人比我更懂电流,今天带你重新认识电流( 二 )


文章插图
设电子带电量为 ,运动的周期为  。那么每经过 的时间,就有 这么大的电荷量穿过回路上的任意截面,于是电流强度为 根据周期 与频率 以及角速度 的关系,该电流也可表示为
再例如,一个带电的金属盘,绕轴旋转,也形成不同半径的环电流 。

没有人比我更懂电流,今天带你重新认识电流

文章插图
这种电流不是一般的传导电流,不能产生焦耳热!不能形成真实的电路 。
要不然,你给我算算氢原子的电子每秒产生多少焦耳热?
实际上,真空中的电流不满足欧姆定律 。因为,对真空中带电粒子运动形成的电流来说,载流子并不受到类似于金属中的晶格的碰撞,因此真空没有电阻也没有电导 。
电荷的运动产生电流,而电荷本身要激发电场,这容易造成一种误解,很多人因此认为形成电流的带电粒子的电场必定显露出来 。但实际上,对一般导体中的传导电流来说,载流子是在大量带正电的金属离子组成的背景上流动的,导体本身是中性的!
往往我们将此类特殊的电流称之为一种“等效电流”,这里的等效指的是,它与普通的传导电流同等地产生磁场!
温馨提示:不要将此处的“等效电流”与电路分析中的“等效电路”搞混了
实际上,我们最开始学磁场的时候,毕奥-萨法尔定律中的电流就是包含这种等效电流的广义电流 。而麦克斯韦方程组中的传导电流当然也是指广义电流 。
学过光电效应的人知道,光电子从阴极漂移到阳极的过程中,如果忽略空气的影响,这段电流就是电荷在真空中的运动导致的,没有电阻,因此不受欧姆定律的约束 。
那么,物理学中的电流就这些吗?
非也!还有两种,分别是磁化电流和位移电流 。
它们也是两种等效电流,顾名思义,也都是为解释磁性而引入的 。换句话说,它们已经脱离了“电荷运动”这一电流的基本特征了!
那就奇了!连电荷运动都没有,何故可被称之为电流?
先别急,且听我慢慢道来 。
先来看磁化电流 。
人们发现磁是电的运动导致的(暂不考虑自旋这种内禀性质对磁性的解释),为了解释天然磁性,法国物理学家安培提出了“分子环流”假说 。
没有人比我更懂电流,今天带你重新认识电流

文章插图
如下图所示,任何一个原子或分子,都可以看作有电荷绕着中心旋转,总体形成一个微小的环电流,即“分子环流” 。
没有人比我更懂电流,今天带你重新认识电流

文章插图
根据电流激发磁场的规律,这个分子环流将产生一个叫做磁矩的物理量 。它的大小为分子环流包围的面积 乘以分子环流的等效电流 ,方向与环流方向成右手螺旋关系,即
很显然,磁矩的方向正好沿环流形成的磁场 的方向 。
没有人比我更懂电流,今天带你重新认识电流

文章插图
 
一般情况下,物质的分子环流排列是混乱的,因此物质不显磁性,如下图左边所示 。当受到外磁场作用时,这些分子环流将大致整齐排列 。如下图右边所示,它们的磁矩尽可能沿一个方向排列,就像无数个小磁针聚集在一起,形成一个总的磁场,由它们构成的物质整体就呈现磁性了 。
没有人比我更懂电流,今天带你重新认识电流

文章插图
假设有一个圆柱形磁铁,内部的分子环流排列整齐,那些处在磁铁截面边缘处的每个分子环流的一段连在一起,形成一个大的环流,如下图所示 。
没有人比我更懂电流,今天带你重新认识电流

文章插图
据此我们可认为,一个条形磁铁就像一个通电螺线管一样 。换句话说,磁铁的表面有看不见的电流缠绕着!这种电流无法被接出来使用,它被局限在磁体的表面,我们称之为“束缚电流”,或叫“磁化电流” 。
所以,磁化电流之所以是电流,因为它与真实的电荷运动形成的电流一样,能等效地产生磁场!
再来看位移电流 。
根据安培环路定理,磁场强度对闭合路径的积分等于以此路径为边界的任意曲面上的电流密度的通量,即 这个定理在数学上叫斯托克斯定理 。它告诉我们,矢量沿着任意闭合路径的积分,一定等于它的旋度(这里是 )对以该闭合路径为边界的任意曲面的通量 。
既然它是一个数学定理,它必定永远是对的,因为数学是建立在公理上的逻辑体系 。


推荐阅读