图神经网络快速爆发,最新进展都在这里了( 二 )
文章插图
论文解析:
5、Knowing Your FATE:Explanations for User Engagement Prediction on Social Apps
Snapchat团队的这篇文章探讨了使用GNNs的社交媒体应用程序中用户的参与度 。 它提出了一个端到端的神经网络框架来预测用户参与度 , 这些因素包括好友数量和质量、用户发布内容的相关性、用户行为和时间因素 。 这是GNNs最直观的应用之一 。
文章插图
论文解析:
下面是CVPR/KDD/ECCV/ICML更多的关于图卷积网络的论文:
[CVPR 2020] Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
[CVPR 2020] Geometrically Principled Connections in Graph Neural Networks [CVPR 2020] SuperGlue: Learning Feature Matching With Graph Neural Networks
[CVPR 2020] Learning Multi-View Camera Relocalization With Graph Neural Networks
[CVPR 2020] Multi-Modal Graph Neural Network for Joint Reasoning on Vision and Scene Text
[CVPR 2020] Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory
[CVPR 2020] Dynamic Multiscale Graph Neural Networks for 3D Skeleton Based Human Motion Prediction
[CVPR 2020] Dynamic Graph Message Passing Networks
[ECCV 2020] Graph convolutional networks for learning with few clean and many noisy labels
[ICML 2020] When Spectral Domain Meets Spatial Domain in Graph Neural Networks
[KDD 2020] Graph Structural-topic Neural Network
[KDD 2020] Towards Deeper Graph Neural Networks
[KDD 2020] Redundancy-Free Computation for Graph Neural Networks
[KDD 2020] TinyGNN: Learning Efficient Graph Neural Networks
[KDD 2020] PolicyGNN: Aggregation Optimization for Graph Neural Networks [KDD 2020] Residual Correlation in Graph Neural Network Regression
[KDD 2020] Spotlight: Non-IID Graph Neural Networks
[KDD 2020] XGNN: Towards Model-Level Explanations of Graph Neural Networks
[KDD 2020] Dynamic Heterogeneous Graph Neural Network for Real-time Event Prediction
[KDD 2020] Handling Information Loss of Graph Neural Networks for Session-based Recommendation
[KDD 2020] Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
[KDD 2020] GPT-GNN: Generative Pre-Training of Graph Neural Networks
[KDD 2020] Graph Structure Learning for Robust Graph Neural Networks
[KDD 2020] Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks
[KDD 2020] A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks
[KDD 2020] Competitive Analysis for Points of Interest
[KDD 2020] Knowing your FATE: Explanations for User Engagement Prediction on Social Apps
[KDD 2020] GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases
推荐阅读
- “千店同开”引质量担忧,小米回应
- 企业|技术快速迭代倒逼知识产权“贴身”服务,上海首家AI商标品牌指导站入驻徐汇西岸
- 三星Galaxy A52 5G通过3C认证 支持最高15W快速充电
- 大健康速递丨腾讯上线疫苗接种服务区;华大基因研发出快速鉴定盒
- 展望2021|运营商蓄势5G新基建,2021年或成5G应用端爆发元年
- 家用继续爆发 2020年投影市场迎来冰火两重天
- 2020年度网络盘点:WiFi 6大爆发、Mesh与游戏加速齐飞
- 小米联合京东及爱回收推全新换机服务 帮你快速换新机
- 西安奕斯伟硅产业基地项目建设刷新我国建设大硅片制造项目的最快速度
- 网络|万物互联,更离不开网络文明