- After training - for detection:
- Increase network-resolution by set in your .cfg-file (height=608 and width=608) or (height=832 and width=832) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: linkit is not necessary to train the network again, just use .weights-file already trained for 416x416 resolutionbut to get even greater accuracy you should train with higher resolution 608x608 or 832x832, note: if error Out of memory occurs then in .cfg-file you should increase subdivisions=16, 32 or 64: link
With example of: train.txt, obj.names, obj.data, yolo-obj.cfg, air1-6.txt, bird1-4.txt for 2 classes of objects (air, bird) and train_obj.cmd with example how to train this image-set with Yolo v2 - v4
Different tools for marking objects in images:
- in C++: https://github.com/AlexeyAB/Yolo_mark
- in Python: https://github.com/tzutalin/labelImg
- in Python: https://github.com/Cartucho/OpenLabeling
- in C++: https://www.ccoderun.ca/darkmark/
- in JAVAScript: https://github.com/opencv/cvat
- on Linuxusing build.sh orbuild darknet using cmake orset LIBSO=1 in the Makefile and do make
- on Windowsusing build.ps1 orbuild darknet using cmake orcompile builddarknetyolo_cpp_dll.sln solution or builddarknetyolo_cpp_dll_no_gpu.sln solution
- C API: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.hPython examples using the C API::https://github.com/AlexeyAB/darknet/blob/master/darknet.pyhttps://github.com/AlexeyAB/darknet/blob/master/darknet_video.py
- C++ API: https://github.com/AlexeyAB/darknet/blob/master/include/yolo_v2_class.hppC++ example that uses C++ API: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
推荐阅读
- windows.old可以删除吗?
- 一个可放大图像的开源的浏览器扩展
- 新windows勒索软件变种,通过USB驱动横向传播
- 让Mac电脑读取NTFS硬盘的免费开源的软件
- 9个优秀的 VUE 开源项目
- Win 10系统盘突然满了,不下载第三方软件,应该怎么清理?
- CentOS7上安装与配置开源堡垒机Teleport
- 全球知名25种开源情报库
- Win7家庭版如何给文件夹设置密码?Win7文件夹加密方法
- Ubuntu安装及配置