开源!适用于Win和Linux平台的YOLO4和YOLO3( 八 )

  • mAP (mean average precision) - mean value of average precisions for each class, where average precision is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
  • mAP is default metric of precision in the PascalVOC competition, this is the same as AP50 metric in the MS COCO competition. In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but IoU always has the same meaning.
    开源!适用于Win和Linux平台的YOLO4和YOLO3

    文章插图
     
    Custom object detection:Example of custom object detection: darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights
    开源!适用于Win和Linux平台的YOLO4和YOLO3

    文章插图
     

    开源!适用于Win和Linux平台的YOLO4和YOLO3

    文章插图
     
    How to improve object detection:
    1. Before training: