千万级MySQL数据库建立索引,提高性能的秘诀( 五 )

  • 不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0 这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:create table #t(…)
  • 很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)
  • 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用 。
  • 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了insert 及 update 的 效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定 。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要 。
  • 应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储 顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源 。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引 。
  • 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销 。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了 。
  • 尽可能的使用 varchar/nvarchar 代替 char/nchar,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些 。
  • 任何地方都不要使用 select * from t,用具体的字段列表代替“*”,不要返回用不到的任何字段 。
  • 尽量使用表变量来代替临时表 。如果表变量包含大量数据,请注意索引非常有限(只有主键索引) 。
  • 避免频繁创建和删除临时表,以减少系统表资源的消耗 。
  • 临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时 。但是,对于一次性事件,最好使用导出表 。
  • 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert 。
  • 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table,然后 drop table,这样可以避免系统表的较长时间锁定 。
  • 尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写 。
  • 使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效 。
  • 与临时表一样,游标并不是不可使用 。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时 。在结果集中包括“合计”的例程通常要比使用游标执行的速度快 。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好 。
  • 在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC 消息 。
  • 尽量避免大事务操作,提高系统并发能力 。
  • 尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理 。




  • 推荐阅读