神奇的量子加密技术( 三 )


神奇的量子加密技术

文章插图
加密过程
 
这个世界上的加密方式有很多 , 他们的安全等级也不一样 。很多密码都是有条件安全的 , 比如假设第三方只拥有有限的计算能力 。我们知道的大规模商用的 RSA 密码是这样的一种安全级别 。这种加密算法的安全核心在于 , 基于大素数分解的数学问题是困难的 , 目前没有行之有效的算法(更专业地讲 , 所有算法都是指数时间的——小编注) 。要想攻破这个密码 , 就必须攻克这个长久以来困扰数学家的素数分解问题 。
然而遗憾(对于不法之徒而言 , 幸运)的是 , 量子计算机可以有效地解决素数分解问题 , 这也意味着 RSA 密码体系在量子计算机面前并不安全 。更高一个级别的安全性是无条件安全 , 也就是说 , 就算拥有无穷的计算能力也无法攻破这个密码体系 。
读者们可能怀疑如此梦幻的加密体系也许真如黄粱一梦 , 根本不存在 。事实上早在上个世纪初 , 人们就提出了一次一密算法(One-time pad) , 并且证明了他是无条件安全的 。不过看似如此梦幻的算法却没有被普及开来 , 因为它有一个严重的缺陷 。经典的加密方式要求通信双方在通信之前共享一串和明文是等长的比特串 , 通常被称为密钥 。密钥就像是一把钥匙 , 在加密的过程中 , 我们就好比把明文塞进了一个保险盒 , 然后用密钥把它锁上 。接下来我们把盒子送到接收方手里(可以大摇大摆地送过去) , 并用自己手里的密钥打开盒子 , 取出想要的信息 。一次一密算法要求密钥和明文的长度相同 , 这就让这个加密过程变得极其昂贵 , 难以被商业化 。
神奇的量子加密技术

文章插图
一次一密算法要求密文和明文长度相同
量子加密技术的创新点在于密钥分发技术( Key distribution) , 它很好地解决了一次一密算法中密钥生成的难题 。此外 , 物理学家和数学家证明这个分发密钥的过程在理论上是无条件安全的(据笔者所知 , 这应该是唯一一个在理论上被证明无条件安全的密钥分发方案 。) 。
为了让读者更好地理解量子加密技术 , 我们介绍 BB84 方案 [2] , 它是由 Bennet 和 Brassard 等人在1984年提出的 。BB84 方案的一大优点是它不需要量子纠缠 , 因为量子纠缠是一种比较昂贵的资源 。潘建伟院士在 2017 年用墨子号卫星实行洲际间的量子密钥分发方案也正是 BB84 方案 [3] 。
BB84 方案的具体的过程可以从下面这幅图里看到:
神奇的量子加密技术

文章插图
就好比光的偏振一样 , 量子密钥图片来自维基百科
上面的箭头只是用以类比光的偏振方向 , 并没有严格的定义 。对于这幅图的解释如下(Alice 和 Bob 是信息学领域的常见虚构人物):
算法—— BB84 量子加密方案
 

  1. 神奇的量子加密技术

    文章插图
    神奇的量子加密技术

    文章插图
     , 

    神奇的量子加密技术

    文章插图
    神奇的量子加密技术

    文章插图
    神奇的量子加密技术

    文章插图
    神奇的量子加密技术

    文章插图
    神奇的量子加密技术

    文章插图
    神奇的量子加密技术

    文章插图

    神奇的量子加密技术

    文章插图

  2. 神奇的量子加密技术

    文章插图
    神奇的量子加密技术

    文章插图
    得到测量结果 → ,  这就代表经典的比特 1 。
  3.  
  4.  


推荐阅读