AI人工智能|蒋昌俊:我国AI发展之路依旧漫长 基础研究仍是短板

2020年7月9日 , 2020世界人工智能大会即将在上海拉开帷幕 。
当前 , AI已走出技术爆发的阶段 , 进入落地应用、创造价值的新时期 , AI赋能传统行业的重要性日益凸显 。此次大会中 , AI+工业、AI+健康、AI+教育、AI+金融等主题论坛将依次召开 , 讨论AI赋能的现状、难点和未来前景 , 推动智能时代的传统行业转型 。
纵观全球 , 我国的AI发展处于怎样的国际地位?未来的路又在何方?
AI人工智能|蒋昌俊:我国AI发展之路依旧漫长 基础研究仍是短板
文章图片

文章图片

同济大学副校长、上海市人工智能战略咨询专家委员会召集人蒋昌俊表示 , 在国家政策引领和支持下 , 得益于大规模的用户基础、丰富的应用场景 , 中国人工智能领域不断拥有全球影响力 , 尤其是智能产业化应用已经走在世界前端 。
【AI人工智能|蒋昌俊:我国AI发展之路依旧漫长 基础研究仍是短板】现状:中国智能产业化应用有世界领先 , 基础研究仍是短板
“目前 , 我国在智能交通、互联网金融、智慧医疗等领域已经取得了初步的应用成果 。国内互联网企业也纷纷规划人工智能蓝图 , 比如百度的自动驾驶 , 阿里的城市大脑智能交通 , 腾讯的医疗读片和医疗影像资料处理 , 科大讯飞的语音识别;寒武纪、科大讯飞、商汤科技为代表的初创企业在技术上不断创新;海康威视占据全球智能安防企业的第一名 。这些都是我国在AI产业中取得的实际成就 。”蒋昌俊介绍 。
但同时指出 , 当前我国人工智能产业尚未形成有影响力的生态圈和产业链 , 与美国、欧洲相比 , 更加集中于应用落地 , 在基础理论和原创算法发展薄弱 , 缺乏突破性、标志性的研究成果 , 在共性技术平台、智能芯片等方面发展相对薄弱 。
蒋昌俊认为 , 这一系列的“短板”导致了我国依赖国外开发平台、基础器件等问题的产生 , 显然不利于我国人工智能生态的布局和产业的长期发展 。“因此 , 我们还需要进一步提高认知 , 着眼于未来 , 加大科研攻关力度 , 补齐技术短板 , 建立产业生态 , 抢占产业制高点 。”
在谈到人工智能基础研究时 , 蒋昌俊说:“目前 , 从我国人工智能领域发展角度来讲 , 我们很注重应用方面 , 但是基础研究依然是短板 , 人工智能领域重大的理论和技术大都是源自西方国家 。基础科学研究的特点是需要大量资源、投入周期长、不确定性大和风险高等 , 决定了其难以在短期内获得见效 , 但是只有长期的投入和耐心才能实现真正持久的创新与源源不断的技术发展 。”
从中长期来看 , 人工智能和机器学习领域的发展根源于理论、算法和芯片等基础层研究的突破创新 , 亟需针对人工智能的基础性、前瞻性、源头性的问题研究上有所突破 , 需要学术界和产业界共同努力 , 从源头找到有价值的问题、基础支撑平台技术的创新、搭建良好的产业生态链条等 。
在他看来 , 令人欣慰的是 , 目前各大互联网头部企业已经意识到 , 通过开源技术建立产业生态 , 才是抢占产业制高点的重要手段 。
尽管目前美国仍是该领域发展水平最高的国家 , 但我国的科技企业也在居安思危 , 开始深度学习框架上的布局 。诸如百度的飞浆(PaddlePaddle)、 清华大学的计图(Jittor)、旷视的天元(MegEngine)和华为推出的MindSpore等 , 都相继开源其深度学习算法 , 通过自主研发来掌握AI底层技术 。
未来:AI发展之路依旧漫长 现在始于足下
AI的未来在何方?它将如何发展 , 又将给我们带来怎样的改变?
蒋昌俊表示 , 要想探讨AI的未来 , 就要从其发展特点入手 , 通过探讨传统AI和当前AI , 进而认知未来AI 。
他认为 , 传统的AI注重从感知到认知的过程 , 实现从逻辑到计算的不断提升;而当前的AI , 则是由弱到强的智能 , 是从闭环到开环、从确定到非定的系统 。


推荐阅读