一道概率计算题的解题思路(题解)

先把题目列出: 一共有10个硬币 , 依次投掷完 , 循环10次 , 如果出现3个硬币连续正面或反面 , 你输1元钱;否则 , 我输3元钱 。 你赌不赌?为什么? 解题如下: 1、设总概率为 P; 2、完成一次循环出现 3 个硬币连续正面的事件为 F; 3、完成一次循环出现 3 个硬币连续反面的事件为 B; 4、各次循环事件记为 A0...A9; 5、由于各循环次所用概率值唯一 , 可设为 P(A); 则有: P(A) = P(F + B)= P(F) + P(B) - P(F)*P(B); P = P(A0 + A1 + ... + A9); 为计算方便 , 再设: T8 = A8 + A9; T7 = A7 + T8; T6 = A6 + T7; T5 = A5 + T6; T4 = A4 + T5; T3 = A3 + T4; T2 = A2 + T3 T1 = A1 + T2; T0 = A0 + T1; 则: P(T8) = P(A8 + A9) = P(A) + P(A) - P(A) * P(A); P(T7) = P(A7 + T8) = P(A) + P(T8) - P(A) * P(T8); P(T6) = P(A6 + T7) = P(A) + P(T7) - P(A) * P(T7); P(T5) = P(A5 + T6) = P(A) + P(T6) - P(A) * P(T6); P(T4) = P(A4 + T5) = P(A) + P(T5) - P(A) * P(T5); P(T3) = P(A3 + T4) = P(A) + P(T4) - P(A) * P(T4); P(T2) = P(A2 + T3) = P(A) + P(T3) - P(A) * P(T3); P(T1) = P(A1 + T2) = P(A) + P(T2) - P(A) * P(T2); P(T0) = P(A0 + T1) = P(A) + P(T1) - P(A) * P(T1); 设 P(A") = 1 - P(A) , 可化简如下: P(T8) = 1 - P(A")^2; P(T7) = 1 - P(A")^3; P(T6) = 1 - P(A")^4; P(T5) = 1 - P(A")^5; P(T4) = 1 - P(A")^6; P(T3) = 1 - P(A")^7; P(T2) = 1 - P(A")^8; P(T1) = 1 - P(A")^9; P(T0) = 1 - P(A")^10 用斐氏数列求1个或2个发生的概率为: P(A") = 89 / 1024 ≈ 0.08692 则有: T8 = 0.96979356; T7 = 0.994750120728; T6 = 0.9990875709825264; T5 = 0.99984141983676308832; T4 = 0.999972438767629424750016; T3 = 0.9999952098578139940215527808; T2 = 0.99999916747328807216094587330304; T1 = 0.99999985530685746694157239278007; T0 = 0.99999997485233182775444528186518; 由于: T0 = P(A0 + A1 + ... + A9); 所以: P = 0.99999997485233182775444528186518; 答:因设赌者赢的概率约为(保留6位)1.000000 , 所以选择不赌 。


    推荐阅读