哥白尼计划中国批准,欧洲系统通过 50,000 个链接加速数据流?( 三 )


2000年,欧盟发布了《水框架指令》,要求各成员国建设水环境监测站网,按照统一的标准化方法对地表水和地下水进行监测[70] 。目前,欧盟共建成57300个地表水监测站和51400个地下水监测站,其中地下水水量(以地下水位为主)监测站28970个、地下水水质监测站34970个,有部分监测站既监测水量,又监测水质 。28个成员国中,英国水环境监测站数量最多(12807个),其次是意大利(8311个)、德国(6688个)、丹麦(6085个) 。地下水监测站主要分布在中欧地区,而北欧地区分布较少 。从单位面积地下水监测站数量来看,最高的是马耳他,每1000km2分布120个地下水量监测站;其次是奥地利(40个)、斯洛伐克(31个)、德国(25个)(图2–9) 。
图2-9 欧盟各成员国单位面积地下水监测站数量
在GMES支持下,欧盟于1999年启动了欧洲地形变灾害监测计划 。该计划利用永久散射体雷达干涉(PSI)遥感技术,通过距离地球800km处的欧洲航天局人造卫星精确地探测细微的地面运动 。基于地面运动监测数据,获得火山、地震、地面沉降、滑坡、采矿塌陷等变化信息,为地质灾害防灾减灾提供准确的数据支持 。通过三个阶段计划的实施,目前已查明了欧洲构造运动、沿海低地沉降、滑坡、地下水开采引发的地面沉降、废弃矿山地面塌陷等地质灾害 。
根据“土壤保护主题战略”,欧盟委员会于2009年启动了“欧洲流域土壤变化”项目,对以土壤为核心的地球关键带进行长期观测,监测内容主要包括陆地-大气水碳转化、土壤含水量变化、孔隙水化学、地表水—土壤水—地下水转化、土壤长期演化等 。
(三)机理研究
基于自然资本的理念,欧盟认为地下水不仅为经济发展提供了所需的水资源,而且作为生态系统的重要组成为经济社会提供了所必需的生态服务:维持地下水位,防止地面沉降;补给地表水;污染物净化与过滤;热能储存介质等[71] 。近年来,欧盟地下水科学研究重点包括地下水环境作用、地下水生态系统和污染物污染机理研究等方面 。Wendland等基于含水层岩相、水文条件、水动力条件研究提出了欧洲含水层生境分类[72];Hahn等研究提出了地下水生境分类的层次模型:宏观尺度,群落受生物地理特征影响,中观尺度,受含水层的水文地质条件控制;局域尺度下,群落取决于与地表水的水文交换以及相应的来氧气和营养物的补给[73];Griebler等针对地下水生态系统状态评估、自然背景值、生物指标进行了研究,提出了地下水生态系统生态评估概念框架[74] 。地下水污染方面,重点开展了氮、磷等有机污染研究 。Folkard等对英国境内209个供水井中的挥发性有机污染物进行了调查,发现TCE和PCE是最主要的有机污染物;Cavallero等研究发现工业原料和废弃物是造成意大利米兰地区地下含水层严重有机污染的主要原因;Keuskamp等研究提出了欧盟尺度地下水氮迁移转化模型[75] 。
【哥白尼计划中国批准,欧洲系统通过 50,000 个链接加速数据流?】欧盟土壤保护专题战略将地质灾害列为危害土壤的8种威胁之一,加强了滑坡等地质灾害机理研究,重点包括滑坡诱发机制与滑动过程研究,不同规模、强度、发生机制的滑坡风险定量评估方法研究,气候变化、人类活动和政策变化对滑坡风险模式的研究,滑坡风险管理策略(包括风险降低措施和预防措施)研究,早期预警系统和遥感监测技术研发等[8] 。为了推进不同空间尺度的地质灾害风险评估与区划研究,欧盟实施了安全国土计划,以提高各成员国地质灾害评价与风险评估能力 。欧盟委员会联合研究中心对各成员国地质灾害数据库建设情况进行了梳理,认为有6个国家地质灾害数据库可以支持风险分析,有14个国家地质灾害只能支持易损性分析,需要补充大量信息才能开展欧盟层面的地质灾害风险区划[76] 。欧盟还提出了综合性地质灾害控制与管理的概念,通过建立综合性地质灾害(地面塌陷、滑坡、泥石流、火山、地震等)预警系统,提升地质灾害应对水平和能力 。
2002年欧盟环境行动计划确立了应对气候变化为未来优先发展的目标,并于2009年颁布CO2地质储存指令,有力地推进了CO2地质储存机理与技术研究 。近年来,开展了欧洲CO2点源、基础设施以及地质储存的GIS编图,评价了欧洲深部咸水含水层、油气构造与煤层中CO2的地质储存能力 。在此基础上,研发了各种CO2的捕获与储存技术,包括从工业能源消耗中分离CO2技术、CO2运输技术、石油天然气田或咸水含水层储存技术 。2009年,世界首座燃煤氧燃烧捕获CO2地质储存发电厂示范项目在德国的Spremdurg建成运营,所捕获的CO2通过公路气罐车运往Ketzin的研究试验基地,注入地下咸水含水层[77] 。


推荐阅读