文章插图
机器学习算法概述
"机器智能是人类永远需要的一项发明 。"— Nick Bostrom.
如果您可以回顾几年前的AI并将其与现在的AI进行比较,您会惊讶地发现AI的发展速度随着时间的增长呈指数级增长 。
它已扩展到各种领域,例如ML,Expert Systems,NLP等数十个领域 。
尽管AI的思路是构建可以自行思考和执行的更智能的系统,但仍然需要对其进行训练 。
AI的ML领域是为实现非常精确的目标而创建的,它引入了多种算法,从而可以更顺畅地进行数据处理和决策 。
什么是机器学习算法?机器学习算法是任何模型背后的大脑,可让机器学习并使其更智能 。
这些算法的工作方式是,为它们提供第一批数据,并且随着时间的流逝和算法的准确性的提高,额外的数据也被引入到算法中 。
定期将算法应用于新数据和新经验的过程可提高机器学习的整体效率 。
机器学习算法对于与分类,预测建模和数据分析相关的各种任务至关重要 。
"机器学习方面的突破将价值十个微软 。"- Bill Gates
机器学习算法的类型在本节中,我们将重点介绍现有的各种ML算法 。ML算法的三个主要范例是:
监督学习顾名思义,监督算法通过定义一组输入数据和预期结果来工作 。通过在训练数据上迭代执行功能并让用户输入控制参数来改进模型 。如果发现其映射的预测正确,则认为该算法是成功的 。
文章插图
监督学习
无监督学习在监督算法在用户标记的数据上进行输出预测时,将这些训练结果在没有用户干预的情况下来训练未标记数据 。
这个算法可以对数据进行分类和分组,以识别一些隐藏或未发现的类别,通常用作监督学习的初步步骤 。
文章插图
无监督学习
强化学习强化学习算法旨在在探索和开发之间找到完美的平衡,而无需标记数据或用户干预 。
这些算法通过选择一个动作并观察结果来工作,在此基础上,它了解结果的准确程度 。反复重复此过程,直到算法选择正确的策略为止 。
流行的机器学习算法在熟悉了几种类型的ML算法之后,我们继续演示一些流行的算法 。
1.线性回归
线性回归是一种监督型ML算法,可帮助找到点集合的近似线性拟合 。
线性回归的核心是识别两个变量之间关系的线性方法,其中两个值之一是从属值,另一个是独立的 。
其背后的原理是要理解一个变量的变化如何影响另一个变量,从而导致正或负的相关关系 。
文章插图
线性回归以y = a + bx的形式表示为一条线
该线称为回归线,由线性方程Y = a * X + b表示 。
在此等式中:
· Y —因变量
· a —坡度
· X-自变量
· b-截距
该算法适用于预测输出是连续的并且具有恒定斜率的情况,例如:
· 估算销售额
· 评估风险
· 天气数据分析
· 预测分析
· 客户调查结果分析
· 优化产品价格
1. Logistic回归
Logistic回归算法通常用于二进制分类问题,在这些情况下,事件通常会导致通过或失败,正确或错误这两个值中的任何一个 。
最适合需要预测因变量将属于两类之一的概率的情况 。
该算法的常见用例是确定给定的笔迹是否与所讨论的人匹配,或未来几个月的油价是否会上涨 。
文章插图
通常,回归可用于实际应用中,例如:
· 信用评分
· 癌症检测
· 地理图像处理
· 手写识别
· 图像分割与分类
· 衡量营销活动的成功率
· 预测某种产品的收入
· 特定日子会发生地震吗?
1. 决策树
决策树算法属于监督型机器学习,用于解决回归和分类问题 。目的是使用决策树从观察并处理每个级别的结果 。
决策树是一种自上而下的方法,其中从训练数据中选择最合适的属性作为根,并对每个分支重复该过程 。决策树通常用于:
· 建立知识管理平台
推荐阅读
- 2020必读的12本机器学习书籍
- 机器学习模型的黑盒公平性测试
- 淘宝店如何获得流量 淘宝店铺老店新开怎么获取流量
- 淘宝获取流量的方法有哪些 淘宝如何获取流量
- 黑洞内部有什么?物理学家使用量子计算、机器学习来找出答案
- 手把手教你乘坐国内航班流程,乘坐飞机不迷路
- 网上代销怎么做流程 网上开店代理怎么做
- 淘宝新店没有流量没有访客怎么办 为什么淘宝新店一点流量没有
- 都匀毛尖制作工序流程,都匀毛尖简介
- 手淘消息中心是什么流量 手淘推荐的流量是哪里来的