七大人工智能科技趋势

信息化协同创新专委会

七大人工智能科技趋势

文章插图
 
趋势1:自主事物无论是汽车,机器人还是农业,自主事物都使用AI来执行传统上由人类完成的任务 。智能的复杂程度各不相同,但所有自主事物都使用人工智能与他们的环境进行更自然的交互 。
自主事物有五种类型:
机器人
车辆
无人机
家电
虚拟助理
这五种类型占据四种环境:海洋、陆地、空中和数字 。它们都具有不同程度的能力,协调和智能 。例如,它们可以跨越在空中操作的无人机,人工辅助在田地中完全自主地操作的农业机器人 。这描绘了潜在应用的广泛图景,几乎每个应用程序、服务和物联网对象都将采用某种形式的AI来自动化或增强流程或人为操作 。诸如无人机群之类的协作自主事物将越来越多地推动人工智能系统的未来发展 。
趋势2:增强式分析(大数据)数据科学家现在拥有越来越多的数据来准备,分析和分组,并从中得出结论 。鉴于数据量,探索所有可能性变得不可能 。这意味着企业可能会错过数据科学家无法探索的假设的关键见解 。
增强分析代表了数据和分析能力的第三大浪潮,因为数据科学家使用自动算法来探索更多假设 。数据科学和机器学习平台已经改变了企业如何产生分析洞察力 。
“到2020年,超过40%的数据科学任务将实现自动化” 。
增强分析可识别隐藏的模式,同时消除个人偏见 。虽然企业存在无意中将偏差插入算法的风险,但增强分析和自动化洞察最终将嵌入到企业应用程序中 。
到2020年,公民数据科学家的数量将比专业数据科学家快5倍 。公民数据科学家使用人工智能驱动的增强分析工具,自动化数据科学功能,自动识别数据集,开发假设和识别数据模式 。企业将把公民数据科学家视为实现和扩展数据科学能力的一种方式 。Gartner预测,到2020年,超过40%的数据科学任务将实现自动化,从而提高公民数据科学家的生产力和广泛使用 。在公民数据科学家和增强分析之间,数据洞察将在整个企业中得到更广泛的应用,包括分析师、决策者和运营工作者 。
趋势3:人工智能驱动的开发AI驱动的开发着眼于将AI嵌入到应用程序中并使用AI为开发过程创建AI驱动的工具的工具,技术和最佳实践 。这一趋势正在沿着三个方面发展:
用于构建基于AI的解决方案的工具正在从针对数据科学家(AI基础设施,AI框架和AI平台)的工具扩展到针对专业开发人员社区(AI平台,AI服务)的工具 。借助这些工具,专业开发人员可以将AI驱动的功能和模型注入应用程序,而无需专业数据科学家的参与 。
用于构建基于AI的解决方案的工具正在被赋予AI驱动的功能,这些功能可以帮助专业开发人员并自动执行与AI增强型解决方案开发相关的任务 。增强分析、自动化测试、自动代码生成和自动化解决方案开发将加速开发过程,并使更广泛的用户能够开发应用程序 。
支持AI的工具正在从协助和自动化与应用程序开发(AD)相关的功能演变为使用业务领域专业知识和自动化AD流程堆栈(从一般开发到业务解决方案设计)的更高活动 。
【七大人工智能科技趋势】市场将从专注于与开发人员合作的数据科学家转移到使用作为服务提供的预定义模型独立运营的开发人员 。这使更多的开发人员能够利用这些服务,并提高效率 。这些趋势也导致虚拟软件开发人员和非专业“公民应用程序开发人员”的主流使用 。
趋势4:赋权边缘边缘计算是一种拓扑,其中信息处理和内容收集和传递更靠近信息源,并且将流量保持在本地将减少延迟 。目前,该技术的大部分重点是物联网系统需要在嵌入式物联网世界中提供断开连接或分布式功能 。这种类型的拓扑结构将解决高WAN成本和不可接受的延迟水平等挑战 。此外,它还将实现数字业务和IT解决方案的细节 。
“技术和思维将转变为经验将人们与数百个边缘设备联系起来的地步” 。
到2028年,Gartner预计在边缘设备中嵌入传感器,存储、计算和高级AI功能将不断增加 。一般而言,智能将走向各种终端设备的边缘,从工业设备到屏幕再到智能手机再到汽车发电机 。
趋势5:沉浸式技术到2028年,改变用户与世界互动方式的会话平台,以及改变用户感知世界的方式的增强现实(AR)、混合现实(MR)和虚拟现实(VR)等技术将带来新的身临其境的体验 。AR、MR和VR显示出提高生产力的潜力,下一代VR能够感知形状并跟踪用户的位置和MR,使人们能够查看和与他们的世界互动 。


推荐阅读