八、线性结构方程
线性结构方程是一个相当具有变通与弹性的统计方法,随着研究者对变量间关系界定的差异,LISREL的常见名称包括协方差结构分析,潜变量分析、线性结构模型或验证性因子分析 。LISREL可视为多元回归分析与因子分析两个方法论的整合模型,让研究者可以探讨变量间的线性关系(回归分析),并对可测量显变量与不可测量的潜变量见(因子分析)的因果模型作假设检验 。
九、逻辑斯蒂回归分析
逻辑斯蒂回归可视为传统多元回归分析的一个特列 。它和多元回归分析一样,都具有解释自变量与因变量之间的关系,并可进行预测 。所不同的是在进行多元回归分析时,包括自变量与因变量都必须是定距以上层次变量;但在进行逻辑斯蒂回归分析时,自变量仍是定距以上层次变量,因变量则是二分的定类变量或多分定类变量或定序变量 。
十、对数线性方程
在基本统计学中,当研究者面对探讨两个定类或定序变量间关系的研究问题时,都是以卡方检验来进行假设检验 。当问题的性质是探讨两个定类变量间是否独立或是关联强度时,是以卡方独立性检验来进行假设检验 。进行卡方独立性检验时,研究者必须将样本在两个定类变量上的反应,建立二维列联表(contingency table),以进一步根据列联表中各单元格(cell)的次数反应,进行显著性检验 。但当研究者面对三个或三个以上的定类变量时,所建立的多元列联表间变量关联的分析,卡方独立性检验将无法解决这样的问题,此时适合的方法就是对数线性模型 。利用对数线性模型来解决多元列联表的问题的目的,主要就在于探讨构成列联表的多个定类变量间的关系,进而在精简原则下构建拟合的解释模型,并根据所建立的模型估计单元格参数值,以了解各变量效果对单元格次数的影响 。
十一、Logit对数线性模型
在对数线性模型中,多个定类变量间是互为因果的关系(即相关关系),并无自变量与因变量的区分,研究目的在于探讨变量间的关联强度和性质 。但有时研究者会面临变量间有自变量和因变量的区分的情境 。在基本统计学中,当研究者面对的问题性质是两个定类变量间有自变量和因变量的区别,目的在于探讨两个变量间的因果关系时,多是以卡方齐性检验来进行假设检验 。但自变量个数在两个以上时,卡方齐性检验就不再适用,而必须改用logit对数线性模型方法来对数据进行分析 。Logit对数线性模型的功能与多元回归分析相当类似,都可以用来探讨与解释因变量与自变量间的关系,但不同的是,多元回归分析的变量都是定距以上层次变量,通常以最小二乘法进行模型估计与检验;logit对数线性模型的变量都是定类变量,通常以最大似然估计法进行模型估计与检验 。
【11个常见的多变量分析方法】
推荐阅读
- 肾病的饮食调养
- 那些食品补肾
- 烤海胆的做法
- 最小的猪有多少斤 中国体型最小的猪
- 海胆壮阳吗
- 淡水理疗馆哪家比较好 淡水按摩是怎么收费的啊
- 梦见白纸花是什么意思出殡用的白纸花 梦见白纸黑字是什么意思
- 海胆壳的功效与作用
- 海胆鸡蛋糕怎么做
- 海胆和海参