电子与什么是处于同一层次的粒子( 二 )


质子和中子的组成:一个质子由两个上夸克和一个下夸克 组成,一个中子由两个下夸克和一个上夸克组成
虽然夸克模型当时取得了许多成功,但也遇到了一些麻烦, 如重子的夸克结构理论认为,象Ω-和Δ++这样的重子可以由三个 相同夸克组成,且都处于基态,自旋方向相同,这种在同一能级 上存在有三个全同粒子的现象是违反泡利不相容原理的.泡利不 相容原理说的是两个费米子是不能处于相同的状态中的.夸克的 自旋为半整数,是费米子,当然是不能违反泡利原理的.但物理 学家自有办法,你不是说三个夸克全同吗?那我给它们来个编号 或着上“颜色”(红、黄、蓝),那三个夸克不就不全同了,从 而不再违反泡利原理了.的确,在1964年,格林伯格引入了夸克 的这一种自由度——“颜色”的概念.当然这里的“颜色”并不 是视觉感受到的颜色,它是一种新引入的自由度的代名词,与电 子带电荷相类似,夸克带颜色荷.这样一来,每味夸克就有三种 颜色,夸克的种类一下子由原来的6种扩展到18种,再加上它们 的反粒子,那么自然界一共有36种夸克,它们和轻子(如电子、 μ子、τ子及其相应的中微子)、规范粒子(如光子、三个传递控 制夸克轻子衰变的弱相互作用的中间玻色子、八个传递强(色) 相互作用的胶子)一起组成了大千世界.夸克具有颜色自由度的 理论得到了不少实验的支持,在70年代发展成为强相互作用的重 要理论——量子色动力学.
三、量子色动力学及其特点
“量子色动力学”这一名称听起来有点可怕,念起来有点拗 口,应该这样念:量子/色/动力学.这个理论认为,夸克是带有 色荷的,胶子场是夸克间发生相互作用的媒介.这不禁让我们想 起电子是带有电荷的,传递电子间相互作用的媒介是电磁?。ü?子?。?的确,关于电荷的动力学我们早已有了,它叫“量子电 动力学”,发展于三四十年代.一般读者对电磁相互作用都有点 熟悉,因此就以它为例来理解质子中子内的色相互作用.电磁场 的麦克斯韦方程的量子化就是量子电动力学,具体地说,量子电 动力学就是研究电子和光子的量子碰撞(即散射)的,自然,量 子色动力学是研究夸克和胶子的量子碰撞的.
胶子是色场的量子,就象光子是电磁场的量子一样.胶子 和光子都是质量为0、孕?、传递相互作用的媒介粒子,都属 于规范粒子.两个电子发生相互作用是靠传递一个虚光子而发生 的(虚光子只在相互作用中间过程产生,其能量和动量不成正比, 不能独立存在,在产生后瞬时就湮灭.由相对论知道,自由运动 的电子不能发射实光子,但可以发射虚光子.给予我们光明和热 能的是实光子,它的能量和动量成正比,脱离源后,能独立存 在),自然,两个夸克发生相互作用是靠传递一个虚胶子而发生 的.虚胶子携带着一个夸克的部分能量和动量,交给另一个夸克, 于是两个夸克就以胶子为纽带发生了相互作用.看到这里,我们 会说,不是重复了一下吗?量子色动力学可以由量子电动力学依 葫芦画瓢建立起来,真是太容易了!不过实际上没有这么简单. 按群论的语言讲,电磁场是U(1)规范场,是一种阿贝尔规范场, 群元可以交换,而胶子场是SU(3)规范场,是一种非阿贝尔规范 场,群元不可以交换.一般来说,“非”总比“不非”要麻烦得 多.电荷只有一种,而色荷却有三种(红、黄、蓝);U(1)群的 生成元只有一个,就是1,所以光子只有一种,而SU(3)群有八个 生成元,一个生成元对应一种胶子,所以胶子共有八种;光子不 带电荷,而胶子场由于是非阿贝尔规范场,场方程具有非线性项, 体现了胶子的自相互作用,因而胶子也带色荷,夸克发射带色的 胶子,自身改变颜色.所以胶子场比电磁场复杂,因而出现了许 多不同寻常的现象和性质,其中最重要的恐怕要数“渐近自由” [2-3]和“夸克幽禁”[4-6]了.
“渐近自由”说的是两个夸克之间距离很小时,耦合常数也 会变得很小,以致夸克可以看成是近自由的.耦合常数变小是由 于真空的反色屏蔽效应引起的.真空中的夸克会使真空极化(即 它使真空带上颜色),夸克与周围真空的相互作用导致由真空极 化产生的虚胶子和正反虚夸克的极化分布,最终效果使夸克色荷 变大,这称为色的反屏蔽效应(对于电荷,刚好相反,由于真空 极化导致电荷吸引反号电荷的虚粒子,所以总电荷减少,这称为 电的屏蔽效应.与它作比较,色的反屏蔽效应这一术语由此而 来).由于这一效应,在离夸克较小距离上看来,大距离的夸克 比它带的色荷多,所以小距离上强作用相对而言变弱了,这就是 所谓“渐近自由”.渐近自由是量子色动力学的一项重要成果, 它使得高能色动力学可以用微扰理论计算.但是在低能情形或者 说大距离情形,由于耦合常数变强及存在幽


推荐阅读