3分钟彻底弄懂Sentinel集群限流探索( 四 )

OK,到这里代码和配置都已经OK,还需要跑起来Sentinel控制台,这个不用教,还有启动参数 。
本地可以直接跑多个客户端,注意修改端口号:-Dserver.port=9100 -Dcsp.sentinel.api.port=8720这两个一块改,至于怎么连Apollo这块我就省略了,自己整吧,公司应该都有,不行的话用代码里的写死的方式也可以用 。
-Dserver.port=9100 -Dcsp.sentinel.api.port=8720 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dcsp.sentinel.log.use.pid=true 因为有流量之后控制台才能看到限流的情况,所以用官方给的限流测试代码修改一下,放到Springboot启动类中,触发限流规则的初始化 。
@SpringBootApplicationpublic class DemoApplication {public static void main(String[] args) {SpringApplication.run(DemoApplication.class, args);new FlowQpsDemo();}}测试限流代码:
public class FlowQpsDemo {private static final String KEY = "test_res";private static AtomicInteger pass = new AtomicInteger();private static AtomicInteger block = new AtomicInteger();private static AtomicInteger total = new AtomicInteger();private static volatile boolean stop = false;private static final int threadCount = 32;private static int seconds = 60 + 40;public FlowQpsDemo() {tick();simulateTraffic();}private static void simulateTraffic() {for (int i = 0; i < threadCount; i++) {Thread t = new Thread(new RunTask());t.setName("simulate-traffic-Task");t.start();}}private static void tick() {Thread timer = new Thread(new TimerTask());timer.setName("sentinel-timer-task");timer.start();}static class TimerTask implements Runnable {@Overridepublic void run() {long start = System.currentTimeMillis();System.out.println("begin to statistic!!!");long oldTotal = 0;long oldPass = 0;long oldBlock = 0;while (!stop) {try {TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {}long globalTotal = total.get();long oneSecondTotal = globalTotal - oldTotal;oldTotal = globalTotal;long globalPass = pass.get();long oneSecondPass = globalPass - oldPass;oldPass = globalPass;long globalBlock = block.get();long oneSecondBlock = globalBlock - oldBlock;oldBlock = globalBlock;System.out.println(seconds + " send qps is: " + oneSecondTotal);System.out.println(TimeUtil.currentTimeMillis() + ", total:" + oneSecondTotal+ ", pass:" + oneSecondPass+ ", block:" + oneSecondBlock);if (seconds-- <= 0) {//stop = true;}}long cost = System.currentTimeMillis() - start;System.out.println("time cost: " + cost + " ms");System.out.println("total:" + total.get() + ", pass:" + pass.get()+ ", block:" + block.get());System.exit(0);}}static class RunTask implements Runnable {@Overridepublic void run() {while (!stop) {Entry entry = null;try {entry = SphU.entry(KEY);// token acquired, means passpass.addAndGet(1);} catch (BlockException e1) {block.incrementAndGet();} catch (Exception e2) {// biz exception} finally {total.incrementAndGet();if (entry != null) {entry.exit();}}Random random2 = new Random();try {TimeUnit.MILLISECONDS.sleep(random2.nextInt(50));} catch (InterruptedException e) {// ignore}}}}}启动之后查看控制台,可以看到嵌入式的集群服务端已经启动好 。

3分钟彻底弄懂Sentinel集群限流探索

文章插图
 
查看限流的情况:
3分钟彻底弄懂Sentinel集群限流探索

文章插图
 
最后为了测试效果,再启动一个客户端,修改端口号为9200和8721,可以看到新的客户端已经连接到了服务端,不过这里显示的总QPS 30000和我们配置的不符,这个不用管他 。
3分钟彻底弄懂Sentinel集群限流探索

文章插图
 

3分钟彻底弄懂Sentinel集群限流探索

文章插图
 
好了,这个就是集群限流原理和使用配置方式,当然了,你可以启动多台服务,然后手动修改Apollo中的state参数修改服务端,验证修改配置的方式是否能实现故障转移机制,另外就是关闭client或者server验证是否回退到单机限流的情况,这里就不一一测试了,因为我已经测试过了呀 。
对于独立式的部署方式基本也是一样的,只是单独启动一个服务端的服务,需要手动配置server,而嵌入式的则不需要,loadServerNamespaceSet配置为自己的服务名称即可 。
ClusterTokenServer tokenServer = new SentinelDefaultTokenServer();ClusterServerConfigManager.loadGlobalTransportConfig(new ServerTransportConfig().setIdleSeconds(600).setPort(11111));ClusterServerConfigManager.loadServerNamespaceSet(Collections.singleton(DemoConstants.APP_NAME));tokenServer.start(); 
来源:公众号——艾小仙


推荐阅读