【cnBetaTB】开创机器学习“免疫系统”,DARPA与英特尔、乔治亚理工学院合作
【【cnBetaTB】开创机器学习“免疫系统”,DARPA与英特尔、乔治亚理工学院合作】机器学习系统在面部识别系统到自主车辆等所有领域的普及 , 伴随着攻击者想方设法欺骗算法的风险 。 简单的技术已经在测试条件下起了作用 , 研究人员有兴趣找到减轻这些和其他攻击的方法 。 国防部高级研究项目局(DARPA)已经找来了英特尔和佐治亚理工学院(GeorgiaTech) , 负责领导旨在防御机器学习算法对抗欺骗攻击的研究 。
欺骗攻击在实验室测试之外很少见 , 但在实操环境下可能会造成重大问题 。 例如 , McAfee早在2月份就曾报道 , 研究人员通过在限速标志上贴上两英寸的黑色电子胶带 , 欺骗了特斯拉ModelS中的速度辅助系统 , 使其超速行驶50英里/小时 。 还有其他的例子也不胜枚举 , 这证明欺骗人工智能并不算困难 , 几乎谁都能做到 。
文章图片
DARPA认识到欺骗攻击可能会对任何使用机器学习的系统构成威胁 , 并希望主动出击 , 减轻这种企图 。 因此 , 大约一年前 , 该机构制定了一个名为GARD的计划 , 即GarangingAIRobustnessagainstDeception的缩写 。 英特尔已经同意成为与乔治亚理工学院合作的四年期GARD计划的主要承包商 。
"英特尔和佐治亚理工学院合作 , 共同推进生态系统对人工智能和ML漏洞的集体理解和能力 , "DARPAGARD计划的首席工程师和研究人员JasonMartin说 。 "通过对相干技术的创新研究 , 我们正在合作研究一种方法 , 以增强对象检测 , 提高AI和ML应对对抗性攻击的能力 。 "
目前的欺骗缓解的主要问题是基于规则的、静态的设定 。 如果规则不被打破 , 欺骗就能成功 。 由于欺骗人工智能的方式几乎有无数种 , 仅仅受限于攻击者的想象力 , 因此需要开发出更好的系统 。 英特尔公司表示 , 该计划的初始阶段将着重于利用图像和视频中的空间、时间和语义的一致性来改进物体检测 。
DARPA信息创新办公室的项目经理HavaSiegelmann博士设想的系统与人类的免疫系统并无不同 , 你可以把它称为另一个机器学习系统中的机器学习系统 。
"我们希望产生的那种基于广泛场景的防御 , 可以在免疫系统中看到 , 比如说 , 免疫系统可以识别攻击 , 成功拦截后记住本次攻击的方式 , 以便在未来的交战中创造出更有效的反应 。 "Siegelmann博士说 。 "我们必须确保机器学习是安全的 , 不能被欺骗 。 "
推荐阅读
- 上观新闻疫情不改发展进程 协同创新推动“智造”加速跑,“机器人”核心部件实现自主研发
- 光明网社会AI商标注册机器人:从源头避免重名山寨
- 「机器人」当年扬言“我将会摧毁人类”的女性机器人索菲亚,如今改成啥样了?
- 科学求知者液态机器人成为可能,中国科学家取得突破!让金属有了“记忆”
- [机器人]女性机器人本身只是“工具”,却如此受欢迎?有几个优势是关键
- 科技搜罗在抗疫一线发挥了大作用,上海企业研发的这款清洁机器人
- 猎云网智慧农业与物流机器人研发商“丰疆智能”完成过亿元人民币A1轮融资
- #机器人#雷军郑重声明:请大家不要再给小米手机贴膜,这是对我最大的侮辱!
- 简简科技机器学习修炼手册:从倔强青铜到最强王者
- 机器人▲为什么日本女性机器人能够爆火?原来是她有三项“专属服务”